Products
Products
    • Total RON Comandă
      x
      Your cart is empty.
      Comandă
      ×

      Din cauza încărcării excepționale din această perioadă, există posibilitatea să apară mici întârzieri la livrare.

      Recommendation Engines

      Recommendation Engines

      0.0 / 10 ( 0 votes)
      Language:
      Engleza
      Publishing Date:
      2020
      Publisher:
      Cover Type:
      Paperback
      Page Count:
      296
      ISBN:
      9780262539074
      Dimensions: l: 13cm | H: 18cm
      Add to cart
      13200
      Supplier stock
      Delivery in 2 to 3 weeks!

      Price applicable only to online purchases!
      Free Gift Wrapping!
      Free shipping over 150 RON
      You can return it in 14 days
      You got questions? Contact Us!
      Publisher's Synopsis

      How companies like Amazon and Netflix know what "you might also like" the history, technology, business, and social impact of online recommendation engines.

      Increasingly, our technologies are giving us better, faster, smarter, and more personal advice than our own families and best friends. Amazon already knows what kind of books and household goods you like and is more than eager to recommend more; YouTube and TikTok always have another video lined up to show you; Netflix has crunched the numbers of your viewing habits to suggest whole genres that you would enjoy. In this volume in the MIT Press's Essential Knowledge series, innovation expert Michael Schrage explains the origins, technologies, business applications, and increasing societal impact of recommendation engines, the systems that allow companies worldwide to know what products, services, and experiences "you might also like."

      Schrage offers a history of recommendation that reaches back to antiquity's oracles and astrologers; recounts the academic origins and commercial evolution of recommendation engines; explains how these systems work, discussing key mathematical insights, including the impact of machine learning and deep learning algorithms; and highlights user experience design challenges. He offers brief but incisive case studies of the digital music service Spotify; ByteDance, the owner of TikTok; and the online personal stylist Stitch Fix. Finally, Schrage considers the future of technological recommenders: Will they leave us disappointed and dependent--or will they help us discover the world and ourselves in novel and serendipitous ways?

      Reviews and comments

      Nota

      de |

      There are no reviews yet for this product.
      Add a review
      You need to authenticate in order to add a review.